HelpMeFind Roses, Clematis and Peonies
Roses, Clematis and Peonies
and everything gardening related.
ProfilePublications AuthoredPhotosCommentsListing
Admin
 
Fougere-Danezan, Marie

Article (magazine) published 1 Jun 2015.

Background and Aims: The genus Rosa (150–200 species) is widely distributed throughout temperate and sub-tropical habitats from the northern hemisphere to tropical Asia, with only one tropical African species. In order to better understand the evolution of roses, this study examines infrageneric relationships with respect to conventional taxonomy, considers the extent of allopolyploidization and infers macroevolutionary processes that have led to the current distribution of the genus.
Methods: Phylogenetic relationships among 101 species of the genus Rosa were reconstructed using sequences from the plastid psbA-trnH spacer, trnL intron, trnL-F spacer, trnS-G spacer and trnG intron, as well as from nuclear glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which was used to identify putative allopolyploids and infer their possible origins. Chloroplast phylogeny was used to estimate divergence times and reconstruct ancestral areas.
Key Results: Most subgenera and sections defined by traditional taxonomy are not monophyletic. However, several clades are partly consistent with currently recognized sections. Allopolyploidy seems to have played an important role in stabilizing intersectional hybrids. Biogeographic analyses suggest that Asia played a central role as a genetic reservoir in the evolution of the genus Rosa.
Conclusions: The ancestral area reconstruction suggests that despite an early presence on the American continent, most extant American species are the results of a later re-colonization from Asia, probably through the Bering Land Bridge. The results suggest more recent exchanges between Asia and western North America than with eastern North America. The current distribution of roses from the Synstylae lineage in Europe is probably the result of a migration from Asia approx. 30 million years ago, after the closure of the Turgai strait. Directions for a new sectional classification of the genus Rosa are proposed, and the analyses provide an evolutionary framework for future studies on this notoriously difficult genus.

Article (magazine) published 1 Jun 2015.

Rosa sections Chinenses and Synstylae contain approximately 39 wild species mainly distributed in East Asia and are closely related according to previous studies. But the specific relationships within these two sections were still obscure due to limited sampling, low genetic variation of molecular markers, and complex evolutionary histories. In this study, we used four chloroplast (ndhC-trnV, ndhF-rp132, ndhf-trnF and psbJ-petA) and two nuclear (ribosomal ITS and GAPDH) markers with an extensive geographic and taxonomic sampling to explore their evolutionary history. Our phylogenetic analyses suggested that Rosa sections Chinenses and Synstylae defined in traditional taxonomic system are not monophyletic and close to sections Caninae and Gallicanae. Additionally, our results showed incongruence between chloroplast and nuclear markers, and the patterns of incongruence might be due to ancient hybridization (genetic introgression). One putative hybrid species and three samples identified as interspecific hybrids are further discussed in terms of topological incongruence, biological characters and distribution patterns.

Article (magazine) published 2011.

The tea-scented China roses largely correspond to the three recognized double-petaled Rosa odorata (Andrews) Sweet (Rosoideae, Rosaceae) varieties, which are the ancestors of modern hybrid tea roses and had a definite and permanent influence on the evolution of modern garden roses. Here the hypothesis of a hybrid origin of the tea-scented China roses between R. odorata var. gigantea and R. chinensis was tested. Two single-copy nuclear genes of the cytosolic glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and the chloroplast-expressed glutamine synthetase (ncpGS) together with two plastid loci (trnL-F and psbA-trnH) were sequenced for representative accessions of four R. odorata varieties, R. chinensis, and 28 other Rosa species. Phylogenetic relationships were estimated from two nuclear loci using maximum parsimony and Bayesian analyses, and a haplotype network was constructed on the combined plastid data using NETWORK. For GAPDH and ncpGS loci, the clonal sequences of the three double-petaled varieties were clustered into two clades, one clade with R. odorata var. gigantea, and the other with partial sequences of R. chinensis, which suggested that the tea-scented China roses were hybrids between R. odorata var. gigantea and R. chinensis. Two plastid loci suggested that R. odorata var. gigantea could be the maternal parent and R. chinensis the paternal parent.

A - Awards
C - Comments
L - Plants Referenced
P - Photos
R - Ratings/Votes
V - Reviews
© 2024 HelpMeFind.com